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29 Abstract

30 Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories 

31 are still following the business-as-usual RCP8.5 emission pathway. The resulting ocean warming 

32 and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting 

33 coral physiology and health, and these impacts are predicted to worsen in the near future. In this 

34 study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and 

35 Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end-of-

36 century RCP8.5 conditions for temperature and pCO2 (3.5 °C and 570 ppm above present-day 

37 respectively) to unravel how temperature and acidification, individually or interactively, 

38 influence metabolic and physiological performance. Our results pinpoint thermal stress as the 

39 dominant driver of deteriorating health in both species because of its propensity to destabilize 

40 coral-dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had 

41 a significant negative effect on skeleton growth, particularly when photosynthesis was absent 

42 such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching 

43 caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led 

44 to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata 

45 maintained small amounts of photosynthesis and experienced a weaker decline in lipid and 

46 protein reserves that presumably contributed to higher survival of this species. Our results 

47 indicate that ocean warming and acidification under business-as-usual CO2 emission scenarios 

48 will likely extirpate thermally-sensitive coral species before the end of the century, while 

49 slowing the recovery of more thermally-tolerant species from increasingly severe mass coral 

50 bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral 

51 reefs globally, and a shift on surviving reefs to only the most resilient coral species.

52

53 Introduction
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54 Oceans are warming and acidifying rapidly due to anthropogenic CO2 and other greenhouse gas 

55 (GHG) emissions. As a result, marine ecosystems are changing (Hoegh-Guldberg et al., 2014), 

56 and coral reefs are among the ecosystems most urgently threatened (Hughes et al., 2017). 

57 Despite recent success in stabilizing the global increase in GHG emissions between 2014 and 

58 2016 (1.8% had dropped to 0.4% increase per year), GHG emission rates are currently back at 

59 2007-2013 levels (Jackson et al., 2017; Le Quéré et al., 2018; Peters et al., 2017) and tracking 

60 the high emission, ‘business-as-usual’ representative concentration pathway (RCP) 8.5 scenario. 

61 Irrespective of our efforts to curtail GHG emissions, the lagging persistence of CO2 in the 

62 atmosphere will cause increased frequency and intensity of heat stress over the coming decades 

63 (Hoegh-Guldberg et al., 2014), and reefs worldwide will likely start experiencing annual 

64 bleaching outside of El Niño years (van Hooidonk et al., 2016).

65 Heat stress from warming oceans disrupts the symbiosis between the photosynthetic 

66 dinoflagellate endosymbionts (Symbiodiniaceae) and the coral host, resulting in expulsion of the 

67 endosymbiont from the coral tissue. The sensitivity of corals to heat stress depends on several 

68 abiotic factors such as the magnitude, rate of change, and duration of the thermal anomalies 

69 (Hughes et al., 2017), the thermal history (Grottoli et al., 2014), and potential interaction with 

70 other environmental factors (Courtney et al., 2017; Wolff, Mumby, Devlin, & Anthony, 2018). 

71 Additionally, biotic factors such as Symbiodiniaceae type(s) hosted (Berkelmans & van Oppen, 

72 2006; Fitt et al., 2009; Manzello et al., 2018), coral identity (Guest et al., 2016; Hoadley et al., 

73 2019), coral microbiome composition (Ziegler et al., 2019; Ziegler, Seneca, Yum, Palumbi, & 

74 Voolstra, 2017), heterotrophic capacity (Ferrier-Pagès, Sauzéat, & Balter, 2018; Grottoli, 

75 Rodrigues, & Palardy, 2006) and skeleton morphology (Loya et al., 2001) lead to differences in 

76 thermal tolerance between coral species.  

77 Healthy corals rely heavily on autotropic carbon from their dinoflagellate symbionts for their 

78 daily metabolic needs (Grottoli et al., 2006; Muscatine, McCloskey, & Marian, 1981). Bleaching 

79 greatly reduces photosynthetic rates and hence the amount of photosynthetic carbon translocated 

80 to the coral host (Grottoli et al., 2006). The decline in autotrophy can be partly compensated by 

81 heterotrophy (Grottoli et al., 2006; Hughes, Grottoli, Pease, & Matsui, 2010; Levas et al., 2016; 

82 Palardy, Rodrigues, & Grottoli, 2008) and the catabolism of lipid or protein stores (Anthony, 

83 Hoogenboom, Maynard, Grottoli, & Middlebrook, 2009; Grottoli, Rodrigues, & Juarez, 2004; 
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84 Schoepf et al., 2015). However, prolonged bleaching may deplete stored energy reserves, leading 

85 to reduced metabolic activity and growth, and ultimately increased mortality (Anthony et al., 

86 2009; Grottoli et al., 2014; Rodrigues & Grottoli, 2007). 

87 At the same time, the dissolution of atmospheric CO2 in the ocean changes the carbonate 

88 chemistry and decreases the seawater pH and aragonite saturation state (ΩARAG). Ocean 

89 acidification (OA) and declining ΩARAG may affect corals by increasing bleaching susceptibility 

90 and holobiont productivity (Anthony, Kline, Diaz-Pulido, Dove, & Hoegh-Guldberg, 2008; but 

91 see Hoadley et al., 2016; Schoepf et al., 2013) and reducing nutrient uptake efficiency (Godinot, 

92 Houlbrèque, Grover, Ferrier-Pagès, & Larsen, 2011). More importantly, and although in some 

93 cases effects are minimal (e.g. Schoepf et al., 2013), a large body of literature has demonstrated 

94 that acidification reduces several key metrics of coral calcification such as skeleton 

95 microstructure (Cohen, McCorkle, de Putron, Gaetani, & Rose, 2009; Drenkard et al., 2013; 

96 Tambutté et al., 2015), linear extension rates (Crook, Cohen, Rebolledo-Vieyra, Hernandez, & 

97 Paytan, 2013) and overall CaCO3 deposition (Edmunds, Brown, & Moriarty, 2012; Marubini, 

98 Ferrier-Pagès, Furla, & Allemand, 2008), while increasing skeleton porosity (Fantazzini et al., 

99 2015; Tambutté et al., 2015). Ecologically, poorly developed coral skeletons lead to higher reef 

100 erosion and storm susceptibility (Manzello et al., 2008; Marshall, 2000), reduced capacity to 

101 compete for growing space (Darling, Alvarez-Filip, Oliver, McClanahan, & Côté, 2012) and the 

102 inability to keep up with sea level rise (van Woesik, Golbuu, & Roff, 2015).

103 Although it is known that elevated temperature and OA together impact coral health, metabolism 

104 and skeleton formation, the underlying interactive mechanisms of these factors is crucial in the 

105 assessment of the impact and magnitude of future changes (Bay, Rose, Logan, & Palumbi, 2017; 

106 Dove et al., 2013; Schoepf et al., 2019). The number of studies investigating the individual and 

107 combined effects of temperature and pCO2 in an orthogonal design has steadily increased in 

108 recent years (Büscher, Form, & Riebesell, 2017; Edmunds et al., 2012; Reynaud et al., 2003; 

109 Schoepf et al., 2013). However, not many orthogonal studies address extreme warming and 

110 acidification conditions (Hoadley et al., 2016) such as under the RCP8.5 emission scenario, 

111 which predicts a rise of approximately +3.5 °C and +570 µatm CO2 for non-El Niño years by 

112 2100 compared to present-day levels (Meinshausen et al., 2011; van Vuuren et al., 2011). 

113 Importantly, most studies employed static elevations of temperature and CO2, thereby losing the 
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114 diel and seasonal environmental cycles and variability of a natural system. Natural fluctuations in 

115 temperature and CO2 significantly alter coral responses, and are often found to increase 

116 resilience to thermal and acidification stress (Chan & Eggins, 2017; Comeau, Edmunds, Spindel, 

117 & Carpenter, 2014; Jiang et al., 2019; Safaie et al., 2018). Using a novel system to manipulate 

118 warming and acidification, modelled on high-resolution present-day baselines, our study 

119 maintained this variability which is imperative to investigating organismal response to 

120 environmental changes (Rivest, Comeau, & Cornwall, 2017).

121 The present study therefore examines how warming and acidification under RCP8.5 may affect 

122 physiological parameters indicative of long and short-term coral health in two common reef-

123 building coral species. Acropora intermedia and Porites lobata were selected as model species 

124 because of their contrasting life-history strategies and tolerance to environmental stress (Darling, 

125 McClanahan, & Côté, 2013; Levas, Grottoli, Hughes, Osburn, & Matsui, 2013). In an orthogonal 

126 design that respects diel and seasonal variability, present-day and end-of-century summer levels 

127 of temperature and pCO2 were simulated over seven weeks. The chosen physiological parameters 

128 (long-term CaCO3 deposition and skeleton extension, day and night calcification, photosynthetic 

129 and respiration rates, tissue lipid and protein reserves, bleaching and mortality) each give 

130 specific insights into organismal functioning, and collectively provide an ecophysiological 

131 framework for explaining future coral reef trajectories under climatic changes.

132

133 Materials and methods

134 Experimental design

135 Fragments of Acropora intermedia (Brook, 1891) and Porites lobata (Dana, 1846) were 

136 collected in November 2014 from Harry’s Bommie on the leeward reef slope of Heron Island 

137 Reef (23°27′34′′ S 151°55′45′′ E) on the Southern Great Barrier Reef at 5 m water depth (Fig. 

138 1a). Samples were transported back to the Heron Island Research Station, where A. intermedia 

139 branch tips were trimmed to 5 cm length and suspended upright in 35 L outdoor glass aquaria 

140 using fishing line. Cores (30 mm diameter) were drilled from P. lobata colonies using a 

141 pneumatic underwater drill and cut to 2 cm height. In this way, a total of 96 fragments per 

142 species were collected from 8 adult colonies at least 10 m apart, with 10-14 fragments collected 
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143 per colony. Aquaria were covered with blue filters (Lee Filter #131 Marine Blue Filter, 

144 Hampshire, England) to replicate light conditions on the reef slope at 5 m water depth (Dove et 

145 al., 2013), and were equipped with a small powerhead (Hydor Koralia nano 900, HYDOR srl, 

146 Bassano del Grappa, Italy) for gentle water circulation (900 L h-1). Coral fragments fully 

147 recovered from sampling damage under untreated flow-through seawater for two weeks. 

148 Thereafter, treatment water from the sumps was gradually introduced and mixed with untreated 

149 seawater in 25% increments per week (to obtain 25, 50, 75 and 100% treatment water) until full 

150 treatment conditions were reached (December 3-27, 2014). Corals were then kept under 100% 

151 treatment conditions for 7 weeks over Austral summer, after which physiological measurements 

152 took place. 

153 Temperature and pCO2 treatments were established using a computer-controlled simulation 

154 system in which different levels of warming and acidification can be achieved (for a detailed 

155 description of the system see Dove et al., (2013) as well as Achlatis et al. (2017) Supplementary 

156 Material). Treatment conditions were created as offsets to a variable temperature and pCO2 

157 baseline, established by CSIRO and the NOAA Pacific Marine Environment Laboratory Ocean 

158 Program using two- or three-hourly measurements over the previous summer at a reference 

159 location (Harry’s Bommie) on Heron Island (Fig. S1, Fig. S2 in Supporting Information). This 

160 approach carefully preserved natural diel and seasonal fluctuations in temperature and pCO2. 

161 Such variability is crucial because corals respond differently to static or variable environments 

162 (Rivest et al., 2017; Wahl, Saderne, & Sawall, 2016). Temperature and pCO2 were continuously 

163 maintained and monitored in individual 8000 L sumps (turnover rate 4-6 hours) using heater-

164 chillers and gas injection (Achlatis et al., 2017; Dove et al., 2013). Four treatments were set up 

165 based on GHG emission trajectory RCP8.5 (IPCC 2013) for temperature and pCO2 

166 concentrations:

167 1. Control. Served as the baseline for all other modeled treatments; replicated present-day 

168 (PD) conditions for temperature and pCO2 at the reference site. 

169 2. Elevated pCO2. Increased only pCO2 concentrations while maintaining PD temperature 

170 levels. Conditions were increased to those typical of an average end-of-century non-El 

171 Niño year under RCP8.5 scenarios (570 ± 11 µatm above PD levels). 
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172 3. Elevated T. Increased only temperature as specified by the above scenario (3.5 °C above 

173 PD levels) while maintaining PD pCO2 levels. 

174 4. Elevated T/pCO2. Increased both temperature and pCO2 concentration according to the 

175 same RCP8.5 scenario. 

176 Treatment water was pumped from the sumps through the downstream aquaria (n = 2 per 

177 treatment per species) containing the corals at 0.8 L min-1 (aquarium water turnover 30-40 

178 minutes). Light intensity inside the downstream aquaria was monitored using submersible light 

179 loggers (Odyssey Dataflow Systems). Seawater pH was measured continuously (InPro4501 VP 

180 X, Mettler Toledo, Victoria, Australia) in the downstream aquaria (Fig. S3), and temperature 

181 (Table 1, Fig. S1) was logged every 10 minutes (HOBO Pendant temperature loggers, Onset, 

182 Bourne, USA). Average PD and RCP8.5 temperatures were 27.5 °C and 30.5 °C respectively 

183 (Table 1). The maximum monthly mean (MMM) temperature for Heron Island is 27.3 °C 

184 (Berkelmans, 2002), and degree heating weeks (DHW) started accumulating at MMM + 1 °C 

185 (28.3 °C). In the RCP8.5 and PD temperature treatments, this point was reached after December 

186 25th 2014 and January 27th 2015 respectively. Water samples for total alkalinity (TA) were 

187 collected weekly at midday and midnight in the downstream aquaria. TA was determined by 

188 Gran titration after Dickson et al. (2003) (Mettler-Toledo T50 titrator, Mettler-Toledo, 

189 Greifensee, Switzerland). TA values from these measurements were used to calculate pCO2 and 

190 aragonite saturation (ΩARAG) values in the downstream aquaria (Table 1). 

191

192 Table 1. Treatment design and reference experimental conditions (mean ± sd) in the downstream 

193 aquaria during the 7-week experimental period. Seawater conditions were created in upstream 

194 sumps before being pumped through downstream aquaria containing the corals. Weekly 

195 aquarium temperature averages and measured TA and pH values were used to calculate 

196 downstream ΩARAG and pCO2 using the program CO2SYS (version 2.1).

 
Experimental design

 
Downstream aquarium conditions

Treatment Temperature

level

pCO2 

level

 

T (°C) pCO2 

(µatm)

Total alkalinity 

(µmol kg-1)

pHNBS ΩARAG

Control (PD) PD PD  27.5 ± 1.6 490 ± 99 2210 ± 32 8.10 ± 0.07 3.24 ± 0.13
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Elevated pCO2 PD RCP8.5  27.4 ± 1.9 925 ± 204 2218 ± 39 7.87 ± 0.08 2.18 ± 0.10

Elevated T RCP8.5 PD  30.4 ± 1.8 524 ± 162 2258 ± 10 8.09 ± 0.08 3.39 ± 0.38

Elevated T/pCO2 RCP8.5 RCP8.5  30.8 ± 2.0 890 ± 47 2261 ± 10 7.89 ± 0.02 2.32 ± 0.07

197

198 As the possibility of coral mortality was anticipated during the experimental period, each 

199 treatment was started with n = 24 corals to maximize the number of potentially surviving corals 

200 at the point of the physiological measurements. Twelve randomly selected fragments of either A. 

201 intermedia or P. lobata were kept in each aquarium, with two aquaria per species for each 

202 treatment. Coral fragments were randomly assigned to aquaria, and placement of the aquaria was 

203 randomized such as to receive one of four treatment conditions. Corals were rotated between 

204 aquaria of the same treatment every fourth day in order to eliminate potential tank or positional 

205 effects (e.g. light variations) (Hughes et al., 2010; Levas et al., 2013; Schoepf et al., 2014). 

206 Corals were always rotated in the same cohort to enable cohort effects to be calculated and 

207 compared. Aquaria were emptied and cleaned before rotation to prevent any carry-over effects 

208 (e.g. pathogens) between cohorts. All corals were supplementary fed thawed Artemia (~250 mg 

209 per aquarium) daily after sunset. Water flow was interrupted for one hour during the feeding, 

210 while powerheads were kept on to maintain a gentle mixing. Bleaching and mortality were 

211 recorded every second day starting at the initiation of the treatment increments. Onset of 

212 bleaching was determined when fragments dropped two colour codes on the Coral Watch coral 

213 health chart compared to their initial colour code (Siebeck, Marshall, Klüter, & Hoegh-Guldberg, 

214 2006). Fragments were kept in the treatments as long as alive even when fully bleached. 

215 Mortality was determined as visual loss of all tissue, absence of tentacle extension at night and 

216 subsequent algae overgrowth. Dead corals were removed from the aquaria and not included in 

217 subsequent measurements.

218

219 Metabolic measurements

220 Metabolic oxygen flux was measured over light-dark cycle incubations to calculate 

221 photosynthetic and respiratory rates. Corals (n = 8 per treatment) were placed in 250 ml acrylic 

222 chambers containing 0.45 µm filtered seawater (FSW) from the respective treatments and 

223 equipped with magnetic stirrers for water circulation. Oxygen content of the FSW was reduced 
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224 to approximately 60% air saturation by nitrogen gas bubbling, which may have slightly affected 

225 the seawater carbonate chemistry. Chambers were sealed with acrylic lids equipped with oxygen 

226 sensors, and a water bath mimicked the temperature of the respective treatments (Julabo F33ME 

227 refrigerated/heating circulator, Seelbach, Germany). Seawater oxygen content was logged at 15 

228 second intervals during 30/30-minute light/dark cycles (PreSens OXY-10 mini oxygen meter, 

229 PreSens, Regensburg, Germany). Net photosynthesis (PNET) and dark respiration (RDARK) rates 

230 were calculated from the oxygen measurements during the light period and after 20 minutes of 

231 dark acclimation respectively. PNET:RDARK ratios were calculated to gauge holobiont potential for 

232 remaining net photosynthetic over a 24-hour period, based on a 12.5/11.5-hour light/dark period. 

233 Incubations were done under 320 µmol quanta m-2 s-1 (mean summer maximum daily reef slope 

234 light intensity) using Aqua Medic Ocean Lights, Bissendorf, Germany; 1 x 250 W metal halide 

235 lamp and 2 x 24 W aqualine T5 fluorescent bulbs. 

236

237 Measurements of skeletogenesis 

238 Three separate measurements of skeletogenesis were performed. Two measurements integrated 

239 skeleton growth over the experimental period: long-term average CaCO3 deposition (GDW) and 

240 skeleton volume change (ΔVolume). One measurement recorded instantaneous, end-of-treatment 

241 day and night CaCO3 accretion (GTA) under the conditions of summer thermal maximum. GDW 

242 was defined as the rate of CaCO3 accretion calculated from the initial and endpoint dry weights 

243 of the treatment fragments averaged over the experimental period (Eq. 1). 

244                     Eq. 1     ��� (�� ����3 ��―2 �―1) =  
(����� ―  ���������)

(���� ��������� ∙  ����)

245 In order not to sacrifice the treatment corals, their initial dry weights (DWinitial) were inferred 

246 from their initial buoyant weights (BWinitial). For this, a separate subset of coral fragments (n = 8 

247 and n = 20 for A. intermedia and P. lobata respectively) were collected at the start of the 

248 experiment. Fragments in this subset were buoyant weighed, coral tissue was removed and 

249 skeletons were treated with 10% hypochlorite solution for 24 hours to remove remaining organic 

250 material (Gaffey & Bronnimann, 1993), and dried and reweighed for skeleton DWinitial. The 

251 relationship between skeleton buoyant and dry weights is determined the skeleton and seawater 

252 density (Spencer Davies, 1989). Skeletal density was assumed not to vary significantly within a 
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253 species, justified by the selection of nubbins of similar orientation and position within colonies 

254 exposed to similar light conditions. This rendered a linear relationship between the BWinitial and 

255 DWinitial of the subset fragments (Eq. 2, r2 = 0.9952 and Eq. 3, r2 = 0.9941 for A. intermedia and 

256 P. lobata respectively), which was used to infer DWinitial of the treatment corals (Spencer Davies, 

257 1989).

258                     Eq. 2        ��������� (�. ����������) =  (1.5296 ∙  ���������)
259

260                                                 Eq. 3���������(�. ������) =  (1.5779 ∙   ���������)
261 Initial mean skeletal densities and volumes of the treatment fragments were 3.01 g cm-3 and 0.66 

262 cm3 for A. intermedia and 2.83 g cm-3 and 7.30 cm3 for P. lobata. GDW of the treatment 

263 fragments was calculated from their inferred initial (DWinitial) and measured end-point (DWend) 

264 dry weights (Eq. 3). Initial and end-point skeleton volumes were calculated from skeleton 

265 buoyant and dry weights, and average daily rates of volume change between the start and end of 

266 the experiment were calculated according to Eq. 4 (adapted from Spencer Davies, (1989)). 

267                                       

268    Eq. 4   ∆������ (��3 ��―2 �―1) =  
((����� ―  �����) ―  (��������� ―  ���������))

(∆ ���� ∙  ��� ∙  ���� ���������)   ∙ 1000

269 End-of-treatment instantaneous calcification rates (GTA, n = 8 per treatment) were determined 

270 under day and night conditions using the TA anomaly method (Chisholm & Gattuso, 1991). TA 

271 change was measured over separate 1-hour light and dark incubations at physiological day 

272 (11:00 - 12:00) and night (21:30 - 22:30) time to ensure natural light and dark rhythms. 

273 Incubations were done under the same settings as the metabolic oxygen flux measurements. 

274 Water samples for TA determination were collected before (triplicate sample from the filtered 

275 batch treatment water) and after each incubation from the individual chamber. TA was 

276 determined by Gran titration as above, and used to calculate day and night GTA rates (Eq. 5). 

277

278      Eq. 5��� (���� ����3 ��―2 ℎ―1) =  ( ∆�� (����)
2 ∙  ����� (��2) ∙  ���� (ℎ) )  ∙ ��� (�)
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279

280 Tissue parameters

281 Tissue protein and lipid content (n = 8 per treatment) was measured at the end of the treatment 

282 period. Tissue was collected from the skeletons using a simple airbrush and 30 ml FSW. Half of 

283 the obtained mixture was stored at -20 °C for lipid analysis. The other half was centrifuged for 

284 mass separation at 4500 RPM for 5 minutes, and a 2 ml sample of the supernatant was kept for 

285 water-soluble host protein determination. The remaining pellet was washed with 5 ml FSW, 

286 centrifuged at 4500 RPM for 5 minutes for a total of three washes to clean the pellet from coral 

287 mucus, and then resuspended in 5 ml FSW for symbiont density determination by microscope 

288 hemocytometer counts.

289 Water-soluble host protein content was determined by differential absorbance at 235 and 280 nm 

290 using spectrometry (Spectra Max 2, Molecular Devices, Sunnyvale, California) (Whitaker & 

291 Granum, 1980). Lipids were measured using a modified protocol of Dunn et al. (2012). The 

292 frozen lipid sample was freeze-dried (ScanVac CoolSafe, LaboGene, Lillerød, Denmark), and 

293 dry material was dissolved in 5 ml 2:1 chloroform/methanol solution, vortexed and left overnight 

294 at 4°C to allow full lipid extraction. Next, the samples were centrifuged at 4000 RPM for 4 

295 minutes and the organic solvent was transferred into a clean tube. The remaining pellet was 

296 rinsed with 2 ml chloroform/methanol solution, and this solution was added to the original 5 ml 

297 after one hour at 4 °C. Next, 1 ml of 0.1 mol l-1 KCl solution was added to the organic solvent, 

298 and left overnight at 4°C to allow separation of organic and aqueous phases. After careful 

299 removal of the aqueous phase, the remaining organic phase was washed with 5 ml 1:1 

300 methanol/MQ solution three times. Each wash was left overnight at 4°C for phase separation and 

301 subsequent removal of the aqueous phase. After the third wash the remaining organic solution 

302 was poured into a pre-weighed aluminum tray, left to evaporate, and reweighed for lipid 

303 quantification. The surface area covered by live coral tissue was calculated using the double 

304 waxing method (Veal, Carmi, Fine, & Hoegh-Guldberg, 2010) applied to bleached and dried 

305 skeletons. 

306

307 Statistical analyses
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308 The overall holobiont response for each species to the temperature and pCO2 treatments was 

309 analyzed using multivariate two-way analysis of similarities (ANOSIM) with 9999 permutations. 

310 All data was square root transformed and ranked similarities were calculated using Bray-Curtis 

311 similarities. Treatment responses were graphically represented using non-metric 

312 multidimensional scaling (nMDS). Multivariate analyses were done in PRIMER V6 (PRIMER-e, 

313 Auckland, New Zealand), and included all measured physiological variables: symbiont density, 

314 PNET, RDARK, PNET:RDARK, averaged long-term CaCO3 accretion rates (GDW), skeleton volume 

315 increase, tissue lipid and protein content, and end-of-experiment light and dark calcification rates 

316 (GTA).

317 Further analysis of each individual physiological variable except the GTA measurements was 

318 done using a nested two-factorial ANOVA design. The categorical factors temperature and pCO2 

319 had two levels each, PD and RCP8.5. Cohort was nested in the interaction of the factors to test 

320 for cohort-specific effects (Tolosa, Treignier, Grover, & Ferrier-Pagès, 2011), which were absent 

321 for all parameters tested. Measurements of GTA were analyzed in a mixed three-factorial 

322 ANOVA, with temperature and pCO2 as between subjects factors, and Time (Day/Night) as the 

323 within subjects factor. Cohort effect in light and dark GTA rates was analyzed separately in a 

324 preliminary analysis, whereby cohort response was nested in the interaction of the factors (Table 

325 S1). No between-cohort effects were found and samples from the duplicate cohorts per treatment 

326 were therefore pooled (Tremblay et al., 2012; Tremblay, Gori, Maguer, Hoogenboom, & Ferrier-

327 Pagès, 2016; Underwood, 1997) for the GTA analysis. Coral bleaching and survival curves were 

328 analyzed using a two-proportion z-test. All analyses were tested for violations of normality 

329 (Shapiro-Wilk test) and homogeneity of variances (Levene’s test), and transformed where 

330 necessary using square-root or log transformation. Results were tested against the α = 0.01 level 

331 to reduce chances of a type-I error when assumptions were still violated after transformation 

332 (Underwood, 1997). In all other cases significance was tested against the α = 0.05 level. All 

333 factorial analyses were done with Statistica 13.2 (Statsoft, Tulsa, OK, USA). 

334

335 Results

336 Bleaching and mortality
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337 Thermal stress regimes for the RCP8.5 temperature treatments were as follows: DHW < 4 

338 between December 25th and January 13th; 4 < DHW < 8 between January 14th and 24th; DHW > 8 

339 after January 24th, until a maximum of 15.6 °C weeks had been reached at the end of the 

340 experimental period on February 15th (Fig. 1). In the PD temperature treatments, thermal stress 

341 reached 0.5 °C weeks by the end of the experimental periods.

342 Bleaching of A. intermedia in the elevated temperature treatments started halfway through the 

343 treatment increment period. By the time full treatment was reached, 20% of specimens under 

344 elevated temperatures were visibly bleached, and the number of bleached corals continued to 

345 increase steadily (Fig. 1b). After seven weeks in the elevated T and elevated T/pCO2 treatments, 

346 respectively 83% (z = 3.43, p < 0.001) and 100% (z = 4.42, p < 0.001) of A. intermedia had 

347 bleached. There was a low occurrence of A. intermedia bleaching in both PD temperature 

348 treatments irrespective of the pCO2 concentration because of high baseline summer temperatures. 

349 Bleaching of P. lobata under both elevated temperature treatments started at approximately three 

350 weeks into full treatment (Fig. 1c). Respectively 95% (z = 5.79, p < 0.001) and 100% (z = 6.04, 

351 p < 0.001) of P. lobata specimens in the elevated T and T/pCO2 bleached, while no significant P. 

352 lobata bleaching occurred under PD temperatures. Mortality in A. intermedia under elevated 

353 temperatures trailed the onset of bleaching by approximately 2 weeks (Fig. 1d). After seven 

354 weeks mortality reached 46.7% (z = 2.51, p = 0.012) and 42.1% (z = 2.29, p = 0.022) in the 

355 elevated T and T/pCO2 treatments, respectively. No significant differences in P. lobata mortality 

356 were observed between treatments (Fig. 1e). 

357
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358

359 Figure 1. Bleaching and survival curves for Acropora intermedia (left panels) and Porites lobata 

360 (right panels) during warming and acidification stress. Inset picture (a) shows co-occurring 

361 colonies of the two species on Heron Island. Specimens were exposed to independent and 

362 concurrent levels of temperature and pCO2 according to end-of-century RCP8.5 emission 

363 scenarios over seven weeks. The percentage of unbleached (b,c) and dead (d,e) corals were 

364 recorded every second day. The seven-week experimental period was preceded by four weeks of 

365 step-wise treatment exposure (25% increments weekly). Grey (December 3, 2014) and black 

366 (December 27, 2014) arrows depict the start of the step-wise introduction and full treatment 

367 phases respectively. The colored horizontal bar represents the degree heating weeks (DHW; °C 

368 weeks) reached in the elevated temperature treatments, throughout the experiment; yellow for 
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369 DHW < 4 (November 26th 2014 - January 13th 2015), orange for 4 < DHW < 8 (January 14th - 

370 24th 2015) and red for DHW > 8 (January 25th - February 15th 2015). 

371

372 Multivariate analyses

373 Overall, the physiological response in A. intermedia (Fig. 2a) was strongly determined by the 

374 effect of elevated temperature (ANOSIM R = 0.878, p < 0.001), and less by elevated pCO2 

375 (ANOSIM R = 0.225, p = 0.011). The overall response of P. lobata was similar to A. intermedia, 

376 depending strongly on thermal stress (ANOSIM R = 1, p < 0.001) and less on acidification 

377 (ANOSIM R = 0.116, p = 0.043), consistent with the nMDS results (Fig. 2).

378

379 Figure 2. Non-metric multidimensional scaling (nMDS) plots showing similarities in overall 

380 holobiont response for Acropora intermedia (a) and Porites lobata (b) to differential temperature 

381 and pCO2 treatments. Top panels show grouping based on response to warming, whereas bottom 

382 panels depict grouping based on acidification effects. Vector overlay depicts the proportional 

383 contribution of each biological variable (numbered) to the distribution. 

384

385 Metabolic and tissue parameters
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386 Specimens of A. intermedia and P. lobata under heat stress contained significantly lower 

387 amounts of dinoflagellate symbionts in their tissue (Fig. 3). Irrespective of the level of pCO2, 

388 warming reduced symbiont concentrations by 28-fold in A. intermedia (main effect T; F1,24 = 

389 125.5, p < 0.001; Fig. 3a) and 20-fold in P. lobata (main effect T; F1,24 = 285.7, p < 0.001; Fig. 

390 3b). Rates of PNET in A. intermedia (Fig. 3c) decreased when exposed to elevated temperature 

391 (main effect T; F1,24 = 262.0, p < 0.001) and pCO2 levels (main effect pCO2; F1,24 = 5.2, p = 

392 0.032), but not their interaction, with highest PNET values being measured in the control 

393 treatment. Similarly, RDARK rates in A. intermedia were governed by elevated temperature (main 

394 effect T; F1,24 = 106.5, p < 0.001) and elevated pCO2 levels individually (main effect pCO2; F1,24 

395 = 12.0, p = 0.002). In P. lobata, PNET (Fig. 3d) was affected by warming alone, dropping more 

396 than 50% in elevated temperature treatments (main effect T; F1,24 = 40.79, p < 0.001). No 

397 significant differences were found in RDARK rates for P. lobata. PNET:RDARK ratios for A. 

398 intermedia (Fig. 3e) declined from 1.98 ± 0.08 and 1.84 ± 0.14 in the control and elevated pCO2 

399 treatments respectively, to approximately zero values at elevated temperatures, irrespective of 

400 the level of pCO2 (main effect T; F1,24 = 193.9, p < 0.001). Warming significantly reduced 

401 PNET:RDARK ratios in P. lobata (Fig. 3f) irrespective of the level of pCO2. PNET:RDARK ratios were 

402 above 2 in both PD temperature treatments, and dropped to 1.20 ± 0.11 and 0.87 ± 0.06 for 

403 elevated T and elevated T/pCO2 treatments respectively (main effect T; F1,24 = 64.93, p < 0.001). 

404 Exposure to elevated temperatures decreased the tissue lipid concentration in both A. intermedia 

405 (main effect T; F1,24 = 48.02, p < 0.001) and P. lobata (main effect T; F1,24 = 10.50, p = 0.003) 

406 while tissue lipid concentration was unaffected by acidification (Fig. 3g, h). Similarly, host 

407 protein concentrations in both coral species declined as a result of heat stress (main effect T; F1,24 

408 = 111.7, p < 0.001 and main effect T; F1,24 = 9.410, p = 0.005 for A. intermedia and P. lobata 

409 respectively). Host protein concentrations in both species were unaffected by different levels of 

410 pCO2 (Fig. 3i, j).
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412 Figure 3. Parameters of photobiology and tissue composition (mean ± SE) of Acropora 

413 intermedia (left panels) and Porites lobata (right panels) after exposure to different treatments of 

414 warming and acidification. Dinoflagellate symbiont density (a,b), photobiology (c-f) and tissue 

415 lipid (g,h) and protein content (i,j) were measured on corals (n = 8 per treatment) exposed for 

416 seven weeks to independent and concurrent levels of temperature and pCO2 according to end-of-

417 century RCP8.5 projections. Horizontal blue lines in (e,f) at PNET:RDARK = 1 depict the 

418 autotrophic break-even ratio. The blue text inside the panels indicates the absence (n.s. = no 

419 significance) or presence of significant main effects of warming (temp) and/or acidification 

420 (pCO2).

421

422 Skeletal accretion 

423 Long-term average rates of CaCO3 accretion (GDW) were differentially affected by warming and 

424 acidification in each species. In A. intermedia, GDW declined after exposure to elevated compared 

425 to PD temperatures (main effect T; F1,24 = 14.30, p = 0.001), while it was unaffected by 

426 acidification (Fig. 4a). In P. lobata, exposure to elevated pCO2 reduced GDW rates only under PD 

427 (Fig. 4b), and not under elevated temperatures (interactive effect T × pCO2; F1,24 = 4.445, p = 

428 0.046). Skeleton volume of A. intermedia (Fig. 4c) increased less over time under warming, 

429 while it was unaffected by pCO2 levels (main effect T; F1,24 = 16.65, p < 0.001). In P. lobata, 

430 skeleton volume change was governed by an interactive effect of temperature and pCO2 (Fig. 

431 4d). Volume expansion was reduced by acidification under PD temperatures, but it was 

432 unaffected under elevated temperature levels (interactive effect T × pCO2; F1,24 = 6.394, p = 

433 0.018). Despite the observed differences in volume change between warming and acidification 

434 scenarios in both species, skeleton density did not differ between the treatments (Fig. 4e, f). 
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435

436 Figure 4. Parameters of long-term skeleton growth (mean ± SE) under different treatments of 

437 warming and acidification for Acropora intermedia (left panels) and Porites lobata (right 

438 panels). Seven-week averages of skeleton CaCO3 accretion (GDW; a,b) and skeleton volume 

439 expansion rates (c,d) were determined for corals exposed to independent and concurrent levels of 

440 temperature and pCO2 according to end-of-century RCP8.5 projections. Averages span the entire 

441 period, including before the onset of bleaching. Skeleton density (e,f) was determined at the end 

442 of the experimental period. The blue text inside the panels indicates the presence of significant 

443 main effects of warming (temp) or 2-way interactive effects of warming and acidification (2-

444 inter).

445
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446 End-of-treatment rates of calcification (GTA) in A. intermedia (Fig. 5a) were governed by a three-

447 way interaction between temperature, pCO2 and time of measurement (interactive effect Time × 

448 T × pCO2; F1,28 = 23.3, p < 0.001). When exposed to elevated pCO2, daytime GTA rates were 

449 threefold higher than nighttime GTA rates (Tukey HSD p < 0.001). Warming decreased GTA to 

450 below zero levels irrespective of light or dark conditions (Tukey HSD p < 0.001). When 

451 measured under dark conditions, exposure to elevated temperature reduced GTA rates more under 

452 PD pCO2 compared to elevated pCO2 levels (Tukey HSD p < 0.001). Likewise, GTA rates in P. 

453 lobata (Fig. 5b) depended on a three-way interactive effect of temperature, pCO2 and time of 

454 measurement (interactive effect Time × T × pCO2; F1,28 = 4.64, p = 0.040). Daytime GTA rates 

455 were positive across treatments but declined to negative values under dark conditions in all 

456 except the control treatments. During daytime GTA rates were unaffected by levels of temperature 

457 and pCO2, while elevated pCO2 decreased GTA rates at nighttime irrespective of temperature 

458 (Tukey HSD p = 0.018).

459

460 Figure 5. End-of-treatment day and night-time calcification rates (GTA; mean ± SE) under 

461 different treatments of warming and acidification for Acropora intermedia (a) and Porites lobata 

462 (b). Rates (n = 8 per treatment) were measured after seven weeks of exposure to independent and 

463 concurrent levels of temperature and pCO2 according to end-of-century RCP8.5 projections. The 

464 blue text inside the panels indicates the presence of significant 3-way interactive effects of time 

465 (day/night), warming and acidification (3-inter).
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466

467 Discussion

468 The present study assessed the two global stressors most commonly associated with future 

469 emission scenarios, namely elevated temperature and pCO2. We did so under an experimental 

470 design that preserved the natural diel and seasonal fluctuations in temperature and pCO2 by 

471 superimposing future conditions on a present-day baseline. This allowed full interaction of 

472 environmental drivers under their naturally variable ranges, and produces accurate organismal 

473 responses to their environment. The present study reveals that tropical symbiotic corals 

474 experience physiological impairment, extensive bleaching and mortality when exposed to end-

475 of-century, non-El Niño summer thermal and OA regimes under RCP8.5 scenarios (570 ppm 

476 pCO2 and 3.5 °C above PD values). Thermal stress was identified as the main driver of 

477 physiological changes and mortality due to its correlation with coral bleaching. Collapse of 

478 primary productivity, stored energy reserves and skeleton accretion were the main drivers of 

479 observed mortality. These effects were evident in both species, though the decline was stronger 

480 in A. intermedia compared to P. lobata.  

481

482 Thermal stress and bleaching

483 The RCP8.5 emissions scenario implies far more challenging thermal conditions than expected 

484 under the 2015 Paris Agreement, which aims to stabilize average global temperatures below 2 °C 

485 above preindustrial values (Hoegh-Guldberg et al., 2019). Emission rates currently follow the 

486 RCP8.5 pathway projections (Jackson et al., 2017; Le Quéré et al., 2018), and future reefs will 

487 likely experience annual heat waves exceeding present-day extremes (Frieler et al., 2013; van 

488 Hooidonk et al., 2016). Even before projected end-of-century conditions will be reached, 

489 summer bleaching and El Niño events will likely increase in frequency (Cai et al., 2014). The 

490 2016 and 2017 bleaching events were the worst in GBR history, with >60% bleaching in the 

491 northern regions (Hughes et al., 2017), followed by significant subsequent mortality. During 

492 these bleaching events, northern GBR reefs experienced >4 (high likelihood for severe coral 

493 bleaching) and >8 (high likelihood for widespread coral mortality) °C weeks over approximately 

494 four and three months respectively, and peaking at approximately 15.5 °C weeks (NOAA CRF 5 
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495 km satellite data; Hughes et al., 2019). Thermal conditions in the high temperature treatment of 

496 the present study - which preceded the 2016-2017 bleaching events -  exceeded 4 °C weeks for 

497 more than five weeks and 8 °C weeks for three weeks, before peaking at 15.6 °C weeks at the 

498 termination of the experiment in mid-February, approximately when annual thermal peaks are 

499 typically attained in this region of the GBR (NOAA virtual stations, 5km). By then, both A. 

500 intermedia and P. lobata had bleached severely and A. intermedia mortality had reached 50%, a 

501 proportion that would have likely increased further under extended periods of DHW >8, had the 

502 experiment been continued to the end of summer. 

503

504 Treatment effects on growth, productivity and energy reserves

505 Long-term averages of skeleton accretion (GDW) as well as increases in skeleton volume for both 

506 A. intermedia and P. lobata (Fig. 4) declined concurrently, although they remained positive. 

507 However, in A. intermedia these changes were primarily temperature driven compared to pCO2 

508 driven in P. lobata. The concurrent decrease in skeleton GDW and volume suggests no shift 

509 between skeleton extension and bulk density, contrasting previous studies showing deteriorating 

510 skeleton density and structure under OA (Crook, Cohen, Rebolledo-Vieyra, Hernandez, & 

511 Paytan, 2013; Fantazzini et al., 2015; Tambutté et al., 2015). However, analysis of end-of-

512 treatment rates of calcification (Fig. 5) revealed a negative effect of pCO2 on skeletogenesis in 

513 both species, ultimately resulting in net skeleton dissolution in A. intermedia. However, this was 

514 only the case under dark conditions or otherwise absence of photosynthetic activity (i.e. 

515 bleaching), as demonstrated by the collapse of calcification in A. intermedia under thermal stress. 

516 Our results demonstrate the importance of photosynthetic activity to calcification, particularly in 

517 A. intermedia. The ability to maintain photosynthesis during daytime greatly mitigated the 

518 negative effects of acidification on GTA through internal pH upregulation and energy supply 

519 (Dufault et al., 2013; McCulloch, Falter, Trotter, & Montagna, 2012; Wall et al., 2016), despite 

520 growing in a seawater ΩARAG of approximately 2.3. Effects of elevated pCO2 were strong under 

521 night-time conditions, owing to a reduction in seawater pH which was exacerbated by additional 

522 respiration and deficiency of photosynthetic products at the calicoblastic layer (Colombo-

523 Pallotta, Rodríguez-Román, & Iglesias-Prieto, 2010; Venn et al., 2013). In bleached A. 

524 intermedia GTA was negative, despite average seawater ΩARAG values of 3.39 (Table 1) and 
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525 daytime GTA was not reduced in either species as long as photosynthetic rates were maintained 

526 (Levas, Grottoli, Hughes, Osburn, & Matsui, 2013). The constraints of elevated temperature and 

527 acidification on long and short-term measures of skeleton growth will, provided that corals 

528 survive, limit reef capacity to outpace sea-level rise and decrease resilience to extreme weather 

529 (Manzello et al., 2008; Mollica et al., 2018; van Woesik, Golbuu, & Roff, 2015). 

530 Elevated pCO2 reduced RDARK and PNET in A. intermedia but not in P. lobata. The effect of 

531 seawater acidification on coral photosynthesis is uncertain, with previous studies observing 

532 either small or no changes of photosynthesis under lower pH (Anthony, Kline, Diaz-Pulido, 

533 Dove, & Hoegh-Guldberg, 2008; Comeau, Carpenter, & Edmunds, 2016; Hoadley et al., 2015; 

534 Marubini, Ferrier-Pagès, Furla, & Allemand, 2008). Reduction of the symbiont population 

535 density under heat stress in both species of this study was similar and unaffected by elevated 

536 pCO2, consistent with the hypothesis that temperature is the dominant bleaching agent (Hughes 

537 et al., 2017; Schoepf et al., 2013, 2019). However, PNET did not decline equally in the two 

538 species. In A. intermedia PNET decreased proportionally to symbiont loss, whereas in P. lobata 

539 PNET only dropped by 50% after a 95% symbiont decline. This could indicate a high degree of 

540 self-shading in endosymbionts present in unbleached P. lobata (Enríquez, Méndez, & Iglesias-

541 Prieto, 2005; Hoogenboom, Connolly, & Anthony, 2008), or lower susceptibility of 

542 photosynthesis to heat stress in thermally tolerant Cladocopium C15 in massive Porites (Fisher, 

543 Malme, & Dove, 2012). Alternatively, PNET could be compensated by a significant endolithic 

544 algae community typical of Porites sp. (Marcelino, Morrow, van Oppen, Bourne, & Verbruggen, 

545 2017; Shashar, Banaszak, Lesser, & Amrami, 1997). Endolithic algae are known to increase in 

546 abundance in stressed corals, though it remains unclear why (Fine & Loya, 2002; Reyes-Nivia, 

547 Diaz-Pulido, Kline, Guldberg, & Dove, 2013). We observed a 3 mm thick green band underlying 

548 the coral tissue in P. lobata, approximately 5 mm into the skeleton, indicating that endolithic 

549 algae photosynthesis may have been responsible for the compensation in PNET after symbiont 

550 loss. Retaining photosynthetic rates and a supply of photosynthates from endolithic algae partly 

551 mitigates the detrimental effects of heat stress and bleaching (Fine & Loya, 2002), and may help 

552 corals to sustain the theoretical autotrophic break-even point at PNET:RDARK = 1 (Muscatine, 

553 McCloskey, & Marian, 1981). In the present study, bleached P. lobata were able to maintain a 

554 PNET:RDARK ratio of approximately 1, while this ratio was nearly zero in bleached A. intermedia. 

555 This suggests that P. lobata may still be receiving some autotrophic carbon to maintain basic 
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556 metabolic functions even when bleached, while A. intermedia would have to switch to 

557 heterotrophy or stored energy reserves for metabolism (Grottoli, Rodrigues, & Palardy, 2006; 

558 Rodrigues & Grottoli, 2007). Additionally, high heterotrophic capacity and somatic energy 

559 reserves in P. lobata compared to A. intermedia likely benefit this species during bleaching 

560 (Levas, Grottoli, Hughes, Osburn, & Matsui, 2013; Palardy, Rodrigues, & Grottoli, 2008).

561 Heterotrophic compensation for photosynthetic losses could alleviate immediate energetic stress 

562 after bleaching (Baumann, Grottoli, Hughes, & Matsui, 2014; Grottoli, Rodrigues, & Palardy, 

563 2006; Hughes, Grottoli, Pease, & Matsui, 2010), and possibly aid recovery (Levas, Grottoli, 

564 Hughes, Osburn, & Matsui, 2013). However, this is possibly insufficient for survival when corals 

565 remain bleached over longer timescales (Anthony, Connolly, & Hoegh-Guldberg, 2007; 

566 Anthony, Hoogenboom, Maynard, Grottoli, & Middlebrook, 2009; Grottoli et al., 2006). 

567 Previous studies have demonstrated enhanced heterotrophic feeding capacity in selective coral 

568 species under thermal stress (Ferrier-Pagès, Rottier, Beraud, & Levy, 2010; Grottoli et al., 2014; 

569 Grottoli, Rodrigues, & Palardy, 2006; Hughes, Grottoli, Pease, & Matsui, 2010), and 

570 improvement of coral thermal tolerance through heterotrophy-derived nutrients (Ferrier-Pagès, 

571 Sauzéat, & Balter, 2018). In the present experiment, corals were fed thawed Artemia at 

572 concentrations similar to those of ambient zooplankton in situ,  since the 10 µm filter of our 

573 water inlet had removed most larger prey normally contributing to the coral diet (Houlbrèque & 

574 Ferrier-Pagès, 2009; Palardy, Grottoli, & Matthews, 2005). Visual inspection confirmed tentacle 

575 extension and feeding behavior in both bleached and unbleached living corals, indicating that 

576 feeding capacity was not affected by RCP8.5 scenario conditions. However, the decline in host 

577 tissue protein and lipid concentrations under thermal stress indicates at least a partial failure of 

578 heterotrophy to compensate for loss in photosynthates (Hughes et al., 2010).

579 Lipid and protein concentrations in unbleached specimens of both species were comparable to 

580 concentrations found for healthy corals of similar genera in previous studies (Hoogenboom, 

581 Rottier, Sikorski, & Ferrier-Pagès, 2015) but declined markedly under thermal stress, particularly 

582 in A. intermedia. Lipid catabolism by bleached corals additionally fulfils immediate metabolic 

583 demands in the absence of photosynthetic carbon (Fitt, Spero, Halas, White, & Porter, 1993; 

584 Grottoli, Rodrigues, & Juarez, 2004; Grottoli & Rodrigues, 2011). However, the exhaustion of 

585 stored energy reserves has been linked to rapid increases in mortality of coral larvae (Graham, 
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586 Baird, Connolly, Sewell, & Willis, 2017) and adult colonies (Anthony, Connolly, & Hoegh-

587 Guldberg, 2007; Bay, Guérécheau, Andreakis, Ulstrup, & Matz, 2013; Kenkel, Meyer, & Matz, 

588 2013). We observed a significant increase in A. intermedia mortality when thermally stressed, 

589 concomitant with diminished tissue protein and lipid concentrations. P. lobata mortality 

590 remained low (10%), despite significant declines in tissue lipid and protein concentrations under 

591 thermal stress. The present study ended in mid-February, before the end of the annual thermal 

592 maximum period on Heron Island. Previous studies have described a lagging effect between 

593 thermal stress and physiological decline in several coral species including P. lobata (Levas, 

594 Grottoli, Hughes, Osburn, & Matsui, 2013; Rodrigues & Grottoli, 2007), thus energetic 

595 exhaustion and mortality in our study could be worsened over the full duration of summer 

596 (Hughes et al., 2017).

597

598 Not all corals are equal

599 A. intermedia and P. lobata clearly respond differently to elevated temperature and acidification. 

600 Bleaching in A. intermedia started approximately 5 weeks earlier than in P. lobata, and A. 

601 intermedia mortality was significant under elevated temperature. Furthermore, the collapse of 

602 day and nighttime GTA and productivity in A. intermedia was more severe than in P. lobata, but 

603 acidification affected night-time GTA more in P. lobata. Coral species are known to differ in their 

604 sensitivity to environmental cues (Fabricius et al., 2011), determined by a combination of factors 

605 such as host identity (Fitt et al., 2009; Hoadley et al., 2019), Symbiodiniaceae type(s) hosted (Fitt 

606 et al., 2009; Sampayo, Ridgway, Bongaerts, & Hoegh-Guldberg, 2008) and nearby benthic 

607 community composition (Dove et al., 2013). At Heron Island A. intermedia has been found to 

608 harbor thermally sensitive Cladocopium C3, while P. lobata harbored predominantly thermally 

609 tolerant Cladocopium C15 (Fisher, Malme, & Dove, 2012; LaJeunesse et al., 2004), likely 

610 explaining the later onset of bleaching in P. lobata. The introduction of symbiont-specific traits 

611 and other varying factors may lead to trade-offs in coral performance (Jones & Berkelmans, 

612 2011), and invites further experiments studying different combinations of environments and 

613 organisms to discern future climate impacts on reef health and survival (Bay, Rose, Logan, & 

614 Palumbi, 2017; Hoadley et al., 2019; Wall, Mason, Ellis, Cunning, & Gates, 2017). Our results 

615 show that P. lobata is more tolerant to thermal and OA stress than A. intermedia. Although 
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616 warming is the dominant driver of holobiont response in both species (Fig. 2), temperature 

617 impacts fundamental physiological and metabolic properties more strongly in A. intermedia. 

618 Aside from some exceptions (Kim et al., 2019), this is in accordance with findings from previous 

619 research that classify Porites sp. as temperature tolerant and Acropora sp. as temperature 

620 sensitive (Fabricius et al., 2011; Loya et al., 2001; Marshall & Baird, 2000), though this may 

621 shift as global warming intensifies (Grottoli et al., 2014; Rodolfo-Metalpa et al., 2014). 

622

623 Concluding remarks

624 Changes in metabolism and physiology in both coral species under elevated temperature and 

625 acidification were invariably negative, and mostly driven by heat stress. Previous studies 

626 reported mixed, and often interactive effects (Bahr, Jokiel, & Rodgers, 2016; Büscher, Form, & 

627 Riebesell, 2017; Edmunds, Brown, & Moriarty, 2012; Reynaud et al., 2003; Schoepf et al., 

628 2013), but these were under more moderate temperature and acidification conditions than the 

629 end-of-century conditions of the RCP8.5 scenario, and not during peak summer conditions. 

630 There was no evidence of synergistic behavior of thermal and acidification effects in this study. 

631 Our results demonstrate that under extreme, end-of-century summer conditions of the business-

632 as-usual emissions scenario coral bleaching becomes inevitable even in heat-tolerant species, and 

633 furthermore suggest that the ensuing prolonged collapse of photosynthesis dominates all other 

634 processes (Anthony, Connolly, & Hoegh-Guldberg, 2007; Grottoli, Rodrigues, & Juarez, 2004). 

635 Additionally, the interaction of natural diel pCO2 fluctuations with benthic community 

636 metabolism and decreased seawater buffer capacity under future conditions likely drives a severe 

637 widening of the CO2 range that reefs will be exposed to in the future compared to that predicted 

638 by atmospheric models (Shaw, McNeil, Tilbrook, Matear, & Bates, 2013), exerting additional 

639 stress on these ecosystems.

640 Worldwide, coral health and growth have already significantly decreased over the last decades, 

641 often as a result of climate change (Baumann et al., 2019; Cantin, Cohen, Karnauskas, Tarrant, & 

642 McCorkle, 2010; Cooper, De’ath, Fabricius, & Lough, 2008; Mellin et al., 2019; Perry et al., 

643 2015). Our study indicates that this pattern will become increasingly problematic in the future as 

644 conditions worsen (Lough, Anderson, & Hughes, 2018; van Hooidonk et al., 2016), unless corals 

645 are able to adapt rapidly. The acclimation or adaptation capacity of symbiotic corals to 
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646 environmental change is uncertain, (Berkelmans & van Oppen, 2006; Pandolfi, Connolly, 

647 Marshall, & Cohen, 2011; Sully, Burkepile, Donovan, Hodgson, & van Woesik, 2019; Wright et 

648 al., 2019), and differs between species (Grottoli et al., 2014). The finding that some present-day 

649 corals fare better under conditions of a century ago suggests that little adaptation has occurred so 

650 far (Dove et al., 2013). Meanwhile, some species are close to their upper limit in short-term 

651 thermal acclimation (Schoepf et al., 2019), and may not be able to keep pace under the rapidly 

652 increasing temperature conditions of the RCP8.5 scenario (Bay, Rose, Logan, & Palumbi, 2017; 

653 Hoegh-Guldberg, 2012). Thermally sensitive groups (e.g. Acroporids) have been severely 

654 impacted by warming in recent years (Kim et al., 2019; Le Nohaïc et al., 2017) and are already 

655 facing local extinction (Riegl et al., 2018). Recurring thermal anomalies predicted under RCP8.5 

656 emission pathways will likely cause the disappearance of thermally-sensitive coral species from 

657 reefs globally before 2100 (Lough, Anderson, & Hughes, 2018), while annually recurring 

658 bleaching could prove devastating to even some of the most thermally-tolerant species (Grottoli 

659 et al., 2014). Overall, if warming continues unabated, future reefs will be severely reduced in 

660 diversity and populated by only the most resilient coral species.

661
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